Partial Solution 1
First of all, the bruteforce solution is simple to understand and implement, so we will skip it. Then we can take a closer look at special property A:
Observations
- Notice that if in a pair (ai, bi), ai and bi are never adjacent on the tree, then we can color the vertices of the tree with red and blue such that no two vertices of the same color are adjacent.
- Then there are only two possible good orientations: either connect all red vertices to blue vertices, or connect all blue vertices to red vertices.
Therefore, we just need to set the orientation of the first edge to 0 and then determine the orientations of the other edges accordingly.
Partial Solution 2
Here we need to do some smart things…
Small TrickNow we can consider how to determine if there exists a valid orientation of the edges after fixing the orientations of some edges (just assume we already did, although we start without any).
- If a pair satisfies the condition that there is already an edge in the reverse direction along the path from to , then can no longer reach . In this case, remove this pair from consideration.
- If a pair does not satisfy the condition, it indicates that no valid orientation exists.
- If a pair satisfies the condition where there is no reverse edge on the path from to and exactly one edge remains unassigned, then the orientation of this remaining edge must be the reverse of the direction on the path from to . Set the orientation of this edge accordingly and remove the pair from consideration.
Continue this process of removing pairs until no more operations can be performed. At this point, we will have reduced the problem to a special case with property A. Hence, a valid orientation always exists.
For each pair , we maintain the count of edges with undetermined orientations and reverse edges along the path from to . After determining the orientation of an edge, we update all pairs that include this edge. This approach allows us to solve the problem in time.
By performing such checks, we can find the lexicographically smallest orientation. This results in an algorithm.
Optimization #1
Note that we don’t need to redo everything from scratch each time. Instead, we can simultaneously perform the pair deletion operations while determining the lexicographically smallest orientation.
For a pair : If there is already a reverse edge on the path from to , then we don’t need to consider this path anymore.
For a pair : If there are no reverse edges on the path from to and exactly one edge remains unassigned, then the orientation of this edge must be the reverse of the orientation on the path from to . We set the orientation of this edge accordingly and remove this pair from consideration.
If no removable pairs are found: We identify the first edge with an undetermined orientation and set its orientation to 0. (Similar to the analysis for property A, it can be proven that a valid orientation still exists with this approach.)
By following this strategy, we efficiently determine the orientation while maintaining the lexicographical order, leading to a more efficient, , solution.
Full Solution
We maintain a queue of “pending” edges. The goal is to ensure that after determining the orientation of an edge, we identify all new pending pairs such that:
- There is exactly one edge along the path from to with an undetermined orientation.
- All other edges along the path from to have orientations that match the direction of the path from to .
We can imagine the step that we are doing as the step of shrinking the tree (like multiple points into 1). So then if (a, b) is right next to each other on the tree, shrink it and set b -> a. Otherwise, the first edge in lexicographically smallest orientation must have u to v.
So we consider small to large merging:
- We need to consider every point (including the points that’s the result of mergingg). So we can store all it’s neighbouring points after the merging operation.
But How?
Suppose we merge (u, v), where the size represented by u is not less than that of v. So then, we can merge the information of v into the information of u.
Plus, we need to check whether all point pairs (a, b) containing v are adjacent on the tree. We also need to enumerate all adjacent points of v on the tree and determine if v needs to be merged with its adjacent points. It is difficult to ‘delete’ edges that have already met the conditions after each contraction of nodes. So we just replace it with: during the processing of each edge, use a union-find data structure to check if it can determine the orientation of an undetermined edge on the original tree
Please do be aware that these implementation have a very large constant and my solution contains . It will require you to have a really good constant factor (or just submit it 10 times, surely one will pass).
Full Implementation
// Eating, bathing, having a girlfriend, having an active social life is incidental, it gets in the way of code time.
// Writing code is the primary force that drives our lives so anything that interrupts that is wasteful.
#include <bits/stdc++.h>
using namespace std;
/************************************/
inline int64_t read() { int64_t x = 0, f = 1; char ch = getchar(); while (ch<'0'|| ch>'9') { if(ch == '-') f = -1; ch = getchar(); } while (ch >= '0' && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar();} return x * f; }
inline int read(char *s) { char ch = getchar(); int i = 1; while (ch == ' ' || ch == '\n') ch = getchar(); while (ch != ' ' && ch != '\n') s[i++] = ch, ch = getchar(); s[i] = '\0'; return i - 1; }
#define fileio(x) freopen((string(x) + ".in").c_str(), "r", stdin), freopen((string(x) + ".out").c_str(), "w", stdout)
typedef int64_t ll; typedef pair<int, int> pii; typedef pair<ll, ll> pll; typedef long double ld;
#define fi first
#define se second
ll fpow(ll a, ll b, ll md, ll cur = 1) { while (b) { { if (b % 2 == 1) cur *= a; } a *= a, b = b / 2, a %= md, cur %= md; } return cur % md; }
/************************************/
const int N = 500001;
int n, m;
int U[N], V[N], fr[N], to[N], tp[N], ans[N];
vector<int> G[N];
struct bit {
int c[N];
inline int lowbit(int p) { return p & -p; }
inline void add(int p, int w) {
for (; p <= n; p += lowbit(p))
c[p] += w;
}
inline int qry(int p) {
int res = 0;
for (; p; p -= lowbit(p))
res += c[p];
return res;
}
} eu, ed;
namespace hld {
int cnt = 0;
int dfn[N], low[N], sz[N], dep[N], hs[N], tp[N], fa[N];
void dfs1(int p, int f) {
fa[p] = f, dep[p] = dep[f] + 1, sz[p] = 1, hs[p] = 0;
dfn[p] = ++cnt;
for (int v : G[p]) {
if (v == f)
continue;
dfs1(v, p);
sz[p] += sz[v];
if (sz[v] > sz[hs[p]])
hs[p] = v;
}
low[p] = cnt;
}
void dfs2(int p, int top) {
tp[p] = top;
if (hs[p])
dfs2(hs[p], top);
for (int v : G[p]) {
if (v == fa[p] || v == hs[p])
continue;
dfs2(v, v);
}
}
inline int lca(int u, int v) {
while (tp[u] != tp[v]) {
if (dep[tp[u]] < dep[tp[v]])
swap(u, v);
u = fa[tp[u]];
}
return dep[u] < dep[v] ? u : v;
}
inline void build() {
dfs1(1, 0);
dfs2(1, 1);
}
} // namespace hld
using hld::dfn, hld::low;
namespace dsu {
queue<int> que;
set<pii> edg[N], npi[N];
int par[N];
inline void init(int n) {
iota(par + 1, par + n + 1, 1);
}
inline int find(int x) { return par[x] == x ? x : par[x] = find(par[x]); }
inline bool chk(int p) {
if (ed.qry(dfn[fr[p]]) - ed.qry(dfn[tp[p]]) + eu.qry(dfn[to[p]]) - eu.qry(dfn[tp[p]]))
return false;
return true;
}
} // namespace dsu
using namespace dsu;
inline void chg(int p, int si) { // change one edge and change the answer
ans[p] = si;
int u = U[p], v = V[p];
if (hld::fa[u] == v)
swap(u, v), si ^= 1;
if (si)
eu.add(dfn[v], 1), eu.add(low[v] + 1, -1);
else
ed.add(dfn[v], 1), ed.add(low[v] + 1, -1);
que.push(p);
}
inline void updans() { // update the answer array.
while (!que.empty()) {
int p = que.front();
que.pop();
int u = find(U[p]), v = find(V[p]), si = ans[p];
int szu = edg[u].size() + npi[u].size(), szv = edg[v].size() + npi[v].size();
if (szu < szv)
swap(u, v), swap(szu, szv), si ^= 1;
for (auto e : edg[v]) {
auto it = npi[u].lower_bound(make_pair(e.fi, 0));
while (it != npi[u].end() && it->fi == e.fi) {
if (chk(it->se))
if (ans[e.se] == -1)
chg(e.se, find(U[e.se]) == v ? si ^ 1 : si);
npi[e.fi].erase(make_pair(u, it->se)), npi[u].erase(it);
it = npi[u].lower_bound(make_pair(e.fi, 0));
}
}
vector<pii> qvc;
for (auto c : npi[v]) {
auto it = edg[u].lower_bound(make_pair(c.fi, 0));
if (it != edg[u].end() && it->fi == c.fi) {
if (chk(c.se))
if (ans[it->se] == -1)
chg(it->se, find(U[it->se]) == u ? si : si ^ 1);
qvc.emplace_back(c);
}
}
for (auto c : qvc) {
npi[v].erase(c);
npi[c.fi].erase(make_pair(v, c.se));
}
for (auto e : edg[v]) {
if (e.fi != u) {
edg[u].insert(e);
edg[e.fi].insert(make_pair(u, e.se));
}
edg[u].erase(make_pair(v, e.se));
}
for (auto c : npi[v]) {
npi[c.fi].erase(make_pair(v, c.se));
npi[u].insert(c);
npi[c.fi].insert(make_pair(u, c.se));
}
par[v] = u;
}
}
inline void solve() {
int c = read();
n = read(), m = read();
init(n);
fill(ans, ans + n + 1, -1);
for (int i = 1; i < n; i++) {
U[i] = read(), V[i] = read(), G[U[i]].emplace_back(V[i]), G[V[i]].emplace_back(U[i]);
edg[V[i]].insert(make_pair(U[i], i)), edg[U[i]].insert(make_pair(V[i], i));
}
hld::build();
for (int i = 1; i <= m; i++) {
fr[i] = read(), to[i] = read(), tp[i] = hld::lca(fr[i], to[i]);
npi[to[i]].insert(make_pair(fr[i], i)), npi[fr[i]].insert(make_pair(to[i], i));
}
for (int i = 1; i < n; i++) {
int u = U[i], v = V[i];
auto it = npi[u].lower_bound(make_pair(v, 0));
while (it != npi[u].end() && it->fi == v) {
if (ans[i] == -1)
chg(i, fr[it->se] == u);
npi[v].erase(make_pair(u, it->se));
npi[u].erase(it);
it = npi[u].lower_bound(make_pair(v, 0));
}
}
updans();
for (int i = 1; i < n; i++)
if (ans[i] == -1)
chg(i, 0), updans();
for (int i = 1; i < n; i++)
putchar(ans[i] + '0');
puts("");
}
signed main() {
solve();
return 0;
}